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Abstract

Background: Parkinson’s disease (PD) is a complex and heterogene-
ous disorder that is likely composed of several phenotypic subgroups 
with distinct clinical features and patterns of disease progression. 
Cluster analysis, which categorizes subjects into groups of “maximal 
similarity”, is a valuable statistical tool for characterizing phenotypic 
variability in clinical cohorts and for correlating phenotypes with spe-
cific biomarkers. However, data collection methods often differ be-
tween clinical and research settings, limiting the ability to obtain sta-
tistically significant results from smaller or less characterized cohorts 
and to compare results across studies. Establishing reproducibility of 
clinical cluster analysis across different studies/centers would allow 
generalizability across studies. The goal of this study was to leverage 
cluster analysis of clinical traits to establish reproducibility of clinical 
phenotypes in a cohort of patients with PD at local centers (Discovery 
cohort) and the large PD bioregistry Parkinson’s Progression Markers 
Initiative (PPMI cohort).

Methods: Nonhierarchical k-means clustering by phenotype of sub-

jects in the Discovery (n = 179) and PPMI (n = 368) cohorts was 
performed via principal component analysis (cohort-based clusters). 
Eigenvectors of clustering in the PPMI cohort were identified and 
utilized to re-cluster the Discovery cohort (PPMI-based clusters). 
Overlap in cluster membership between cohort-based clusters and 
PPMI-based clusters of the Discovery cohort was assessed.

Results: Clustering of subjects revealed two clusters in the Discovery 
cohort and three clusters in the PPMI cohort. The first four principal 
components for clustering of the PPMI cohort, accounting for 43% of 
the variability, were driven by depression, anxiety, age at symptom 
onset, gender, and a tremor-dominant phenotype. After re-clustering 
the Discovery cohort based on these traits, 89% of subjects remained 
in their original cluster (κ = 0.776, P < 0.01).

Conclusions: We successfully leveraged cluster analysis of clinical 
traits in PD patients from the larger and standardized PPMI cohort to 
validate reproducibility of clustering in our smaller Discovery cohort. 
We propose a combination of nonhierarchical cluster analysis and 
testing of generalizability with re-clustering to establish clustering 
reproducibility. This method can be adapted for use in a wide range 
of clinical scenarios, allowing for analysis of cohorts that are less 
extensively characterized or those with low intrinsic power secondary 
to low sample size.

Keywords: Parkinson’s disease; Cluster analysis; Cross-validation; 
Phenotype; PPMI

Introduction

Parkinson’s disease (PD) is a heterogeneous disorder, likely 
composed of several phenotypic subgroups with distinct clini-
cal features and patterns of disease progression [1, 2]. Delin-
eating these phenotypes has important implications for under-
standing disease pathophysiology, prognostication, and future 
therapeutics.

Cluster analysis, which categorizes subjects into groups 
of “maximal similarity”, serves as a valuable statistical tool 
for characterizing phenotypic variability in PD cohorts and for 
correlating phenotypes with specific biomarkers. Many varia-
tions on this method have been applied to different cohorts of 
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PD patients in an effort to discover distinct phenotypic sub-
groups (i.e., motor dominant vs. nonmotor dominant; tremor 
dominant (TD) vs. rigid akinetic) [1, 2]. However, data col-
lection methods often differ between clinical and research set-
tings, limiting the ability to use cluster analysis to obtain sig-
nificant results from smaller or less-well characterized cohorts, 
as well as to compare findings across studies. For example, 
a recent systematic review of 20 PD clustering studies found 
that, across studies, there was a wide variety in the variables 
included, statistical methods used, numbers of clusters found 
(two, three, four, or five), and characteristics of the resulting 
clusters [3]. This limitation was further highlighted by Mes-
tre et al [4], who looked at published subtype classification 
systems produced by data-driven clustering of eight separate 
PD cohorts, and was only able to reproduce the classifications 
of one of those eight studies in a well-established reference 
cohort (the Longitudinal and Biomarker Study in Parkinson’s 
Disease (LABS-PD)). The researchers raised the concern that 
there were gaps in validity of currently defined subtypes and 
concluded that implementing external validation should be 
standard practice when reporting new subtype classification 
systems [4]. Establishing reproducibility of clinical cluster 
analysis across studies would greatly expand the generaliz-
ability, and thus clinical utility, of this tool for characterizing 
phenotypic variants in PD.

The Parkinson’s Progression Markers Initiative (PPMI) 
comprises a large PD observational study and biorepository, 
with comprehensive clinical, genetic, imaging, and blood bio-
marker data from approximately 1,500 subjects. Large, mul-
ticenter, longitudinal PD biorepositories can be leveraged for 
cluster analysis to establish reproducibility in smaller, previ-
ously unvalidated cohorts, as described above [1, 4, 5]. The 
present study compares cluster analysis of the PPMI cohort 
with the PD cohort at our centers to establish the reproducibil-
ity of the clustering solution of our cohort.

Materials and Methods

Data collection

The Discovery cohort consisted of patients with PD at the 
Mount Sinai Bendheim Parkinson and Movement Disorder 
Center (MSMD) and The Marlene and Paolo Fresco Institute 
for Parkinson’s and Movement Disorders at NYU Langone 
(NYU). MSMD and NYU cohort data were collected via chart 
review and interview, respectively (Supplementary Material 
1, www.neurores.org). The following demographic data were 
collected: gender, current age, age of onset, disease duration, 
and family history of PD. Current age was excluded from 
analyses due to tight positive correlation with age at symp-
tom onset. The following binary clinical data were collected: 
presence of freezing of gait (FoG), dyskinesias, motor fluc-
tuations, rapid eye movement (REM)-sleep behavior disor-
der (RBD), autonomic symptoms (orthostasis, urinary symp-
toms, constipation), neuropsychiatric symptoms (depression, 
anxiety, dementia, hallucinations), hyposmia, inflamma-
tory comorbidities (e.g., asthma, rheumatoid arthritis), use 

of PD-related medications (i.e., dopaminergic medications, 
monoamine oxidase inhibitors (MAOi), catechol-O-methyl-
transferase (COMT) inhibitors) and anti-inflammatory medi-
cations (aspirin), and motor phenotype as assessed clinically 
(i.e., TD phenotype vs. postural instability and gait disorder 
(PIGD)). Characterization of binary data was based on clini-
cal judgment. Genetic variances in the glucocerebrosidase 
(GBA) and leucine-rich repeat kinase 2 (LRRK2) genes were 
collected as well. Nonbinary data collected included modi-
fied Hoehn and Yahr scale (H&Y), University of Pennsylva-
nia Smell Identification Test (UPSIT), Unified Parkinson’s 
Disease Rating Scale Part III (UPDRS III), and Montreal 
Cognitive Assessment (MoCA) [6]. Analysis of the Discov-
ery cohort was limited to subjects with idiopathic PD and age 
of onset greater or equal to 40 years old to exclude subjects 
with early onset PD, who have distinct phenotypic presenta-
tions and disease-related pathological mechanisms [7]. Sub-
jects with over 50% data missingness and traits with over 
25% data missingness were excluded. Missing values for the 
remaining traits and subjects were then imputed using the 
MICE (v3.8.0) and VIM (v5.1.1) packages, and disease dura-
tion was regressed out [8, 9]. In particular, since our dataset 
included continuous and ordinal variables, we coded logistic 
or ordinal regression (based on the type of data) to obtain 
residual. Then, standardized residual was calculated for each 
variable. Rstudio v2024.04.2+764 (R version 4.4.1) was used 
for all analyses [10].

For the PPMI cohort, PPMI data were downloaded from 
the Laboratory of Neuroimaging (LONI) database (2018 data 
cut). PPMI is a multicenter longitudinal observational study 
that consists of healthy controls and subjects with PD [11]. 
Inclusion criteria for the PD cohort included: diagnosis of 
PD within 2 years of enrollment and naivety to dopaminergic 
drugs at enrollment. All demographic, motor, and nonmo-
tor data used in these analyses were downloaded from the 
first available datapoint (screening and baseline visit). The 
following demographic data were considered in the analy-
ses: current age, age at diagnosis, sex, and family history 
of PD. The following rating scales assessing for the motor 
symptoms of PD were considered in the analyses: H&Y, and 
Movement Disorder Society - Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS) Part III. The following rating 
scales for PD-associated nonmotor symptoms were consid-
ered in the analyses: Geriatric Depression Scale (GDS) Short 
Form, State-Trait Anxiety Inventory (STAI), Scales for Out-
come in Parkinson’s Disease - Autonomic (SCOPA-AUT), 
REM Sleep Disorder Questionnaire (RBD-SQ), Epworth 
Sleepiness Scale (ESS), Questionnaire for Impulsive-Com-
pulsive Disorders in Parkinson’s Disease (QUIP), UPSIT, 
and MoCA. Our analyses were limited to all subjects in the 
PPMI PD cohort with age of onset greater or equal to 40 
years old [7]. Any subjects that had missingness for any of 
the included demographic factors or scales were excluded. 
All continuous and discrete data as well as the H&Y scale 
were scaled using z-scores [1, 12, 13]. Disease duration was 
not controlled for as all subjects were enrolled within 2 years 
of symptom onset. TD and PIGD subscores were calculated 
using UPDRS (off state) data from the baseline visit as previ-
ously described [14].
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Cluster analysis of discovery cohort

Principal component analysis (PCA) was applied to the Dis-
covery cohort data using the stats package prcomp function 
(stats v4.4.1) [10]. The results of this analysis were entered into 
a nonhierarchical k-means clustering analysis, specifying the 
optimal number of clusters, to identify subjects’ cluster mem-
bership. The optimal number of clusters was determined using 
the NbClust package (v3.0.1), which uses 23 indices to propose 
the best clustering scheme based on majority rule. The function 
necessitates manual input of minimum and maximum number 
of clusters the function could suggest, which in these analyses 
were two through seven inclusive, as well as method type, of 
which “k-means” was selected. If the package’s first best recom-
mendation was deemed not clinically relevant, as determined 
by degree of cluster overlap and number of subjects per cluster, 
then the second-best recommendation was selected [15].

To keep data type consistent in the Discovery cohort data 
set, in which most data were binary, non-binary data were con-
verted into categorical data. Disease duration was divided into 
< 5 years, 5 - 9 years, and ≥ 10 years; age at onset was divided 
into < 50, 50 - 59, 60 - 69, ≥ 70; H&Y was divided into < 3 
or ≥ 3.

Chi-square and unpaired t-tests were used to compare cat-
egorical and continuous variables, respectively, with Bonfer-
roni correction and a significance cutoff of adjusted P < 0.05.

Cluster analysis of PPMI cohort

As performed with Discovery cohort, PCA followed by k-
means clustering analysis was applied to the standardized PPMI 
cohort data, using NbClust to determine the optimal number of 
clusters. Chi-square and analysis of variance (ANOVA) were 
used to compare categorical and continuous variables, respec-
tively, with Bonferroni correction and a significance cutoff of 
adjusted P < 0.05.

To determine the number of principal components (PC) 
to retain for future analyses, the eigenvalues of (or portion of 
variance explained by) each PC were visualized using a scree 
plot. Using the “elbow” method, only data from those PCs up 
to the inflection point were retained. Rotated loadings of the 
retained PCs were used to identify variables that contributed 
significantly to the eigenvectors. For each PC, the two traits 
with the greatest factor loading (absolute value) were selected.

Determining reproducibility

The Discovery cohort data were then re-entered into PCA, 
using only the variables that contributed most to clustering 
results of the PPMI cohort based on eigenvectors’ loadings, 
as reported above. K-means clustering analysis was applied; 
NbClust was used to determine the optimal number of clusters. 
Overlap in cluster membership between the original Discov-
ery cohort clustering results (cohort-based clustering) and new 
Discovery cohort clustering results (clustering agreement) was 
assessed by calculating the percent of subjects, whose cluster 

membership remained stable or changed. Cohen’s kappa sta-
tistic value (κ) was then calculated, comparing clusters derived 
from cohort-based clustering and validation-based clustering, 
with a nominal significant cutoff of P < 0.05 [16, 17].

Genetic analysis

Samples were screened through targeted genotyping for the 
G2019S variant of the LRRK2 gene, and for the following 
variants for the GBA gene: IVS2+1, 84GG, E326K, T369M, 
N370S, V394L, D409G, L444P, A456P, R496H, RecNcil. The 
variants were selected based on frequency in the PD popu-
lation and among subjects with Ashkenazi Jewish ancestry. 
Analyses were performed at Dr. William Nichols’ Laboratory 
at the Cincinnati Children’s Hospital.

Institutional Review Board (IRB) approval and ethical 
compliance statement

All study procedures were reviewed and approved by New 
York University’s IRB and the Mount Sinai Hospital IRB. This 
study was conducted in compliance with the ethical standards 
of the responsible institution on human subjects as well as with 
the Helsinki Declaration.

Results

Cluster analysis of the Discovery cohort resulted in two 
clusters differentiated by motor and nonmotor symptoms

The Discovery cohort included 198 subjects, including 66 from 
the NYU clinic and 132 from the MSMD clinic. Nineteen sub-
jects were excluded due to age of onset under 40. Final sample 
size was 179 subjects, of which 63% of subjects were male, 
with mean age 68.7 ± 8.5 years and mean disease duration 8.8 
± 5.1 years, including 28 carriers of disease-associated vari-
ants of GBA (18 subjects with N370S variant, one 84GG, one 
84GG/T369M, three E326K, one L444P/A456P/RecNcil, two 
R496H, one RecNcil, one T369M, one V394L) and 12 carriers 
of disease-associated variants of LRRK2 (G2019S) (Table 1). 
Four subjects carried both the LRRK2 G2019S variant and the 
GBA N370S variant - two were included in the GBA-positive 
group and two in the LRRK2-positive group (Table 1).

As data from the MSMD subset of the Discovery cohort 
were collected via retrospective chart review, not all data 
points and written scales were available for these subjects. 
The following variables were excluded from analysis due to 
meeting the exclusion criteria of greater than 25% missing-
ness (percent missingness noted in parenthesis): UPSIT (80% 
missingness), subjective hyposmia (32%), UPDRS III (68%), 
UPDRS total (66%), and MoCA (66%) (Supplementary Mate-
rial 2, www.neurores.org). Analysis to determine the optimal 
number of clusters for the Discovery cohort resulted in six in-
dices recommending a two-cluster solution (Fig. 1a). Nine in-
dices proposed seven as the best number of clusters. However, 



Articles © The authors   |   Journal compilation © J Neurol Res and Elmer Press Inc™   |   www.neurores.org52

Clinical Clusters in Parkinson’s Disease J Neurol Res. 2024;14(2):49-58

because of the small sample size of our cohort, the seven-clus-
ter solution would not be able to identify clinically significant 
groups. Therefore, the two-cluster solution was chosen for the 
downstream analysis. Cluster 2 (n = 87) was characterized by 
higher rates of anxiety (84% vs. 7.6%, P ≤ 0.001) and depres-
sion (82% vs. 13%, P ≤ 0.001) and a trend towards older age 
of onset (61.4 ± 9.0 vs. 58.5 ± 9.6, P = 0.735). The difference 
between the other traits was not statistically significant, but 
there was an over representation of TD phenotype in cluster 1 
(n = 92) and of dysautonomia, PIGD subtype, and nonmotor 
symptoms in cluster 2 (Fig. 1b, Table 2, Supplementary Mate-
rial 3, www.neurores.org) [13].

Cluster analysis of the PPMI cohort resulted in three clus-
ters differentiated by age of onset, motor symptoms, and 
psychiatric features

To compare the cluster analysis results of our discovery cohort 
with a large and standardized database, the same cluster analy-
sis methods were repeated with the PPMI cohort. The PPMI co-
hort included 433 subjects. Fifty-seven (13%) of subjects were 
excluded due to data missingness. The most common missing 
clinical data were family history (23 subjects). RBDSQ (16 
subjects), and STAI (7 subjects); additionally, age and gender 

were not inputted for 12 and seven subjects respectively (Sup-
plementary Material 4, www.neurores.org). Fourteen subjects 
were excluded due to age of onset under 40. Final PPMI co-
hort sample size was 368 newly diagnosed, medication-naive 
subjects with PD, of which 66% were male, with mean age at 
baseline visit 61.9 ± 8.8 years and mean disease duration at 
baseline 6.5 ± 6.6 months (range 0 - 36 months) (Table 1).

Analysis of the optimal number of clusters for the PPMI 
cohort resulted in 12 indices recommending a three-cluster so-
lution (Fig. 2a). Cluster 1 (n = 71) was characterized by more 
severe anxiety (P < 0.01), depression (P < 0.01), impulse con-
trol disorder (P < 0.01), and orthostasis (P < 0.01). Cluster 2 (n 
= 142) was characterized by a less severe phenotype consider-
ing motor and nonmotor symptoms. Cluster 3 (n = 155) was 
characterized by older age of onset (P < 0.01), greater impair-
ment on MDS-UPDRS part 3 (P < 0.01), and higher H&Y (P < 
0.01) (Fig. 2b, Table 3) [13].

Per the “elbow method” of interpreting PC eigenvectors, 
the first four PCs explained most of the variability in the data 
(Supplementary Materials 5, 6, www.neurores.org). The rating 
scales for depression (GDS) and anxiety (STAI total score) had 
the highest loadings for PC1. Age at onset and MDS-UPDRS 
part 3 score had the highest loadings for PC2. Gender and MDS-
UPDRS part 3 score had the highest loadings for PC3. Tremor 
subscore and sleepiness score (ESS) had the highest loadings for 

Figure 1. Principal component analysis of the discovery cohort (n = 179) based on demographic, motor, and nonmotor character-
istics demonstrated two PD subtypes (after imputing missing data and controlling for disease duration). (a) Scatter plot depicting 
separation of subjects across the first two principal components. (b) Heatmap of clinical characteristics for each cluster identified. 
The greater red hue indicates greater prevalence, greater blue hue indicates lower prevalence. Traits with a statistically signifi-
cant difference between clusters, defined as Bonferroni corrected P < 0.05, are indicated with an asterix (*). PD: Parkinson’s 
disease; RBD: REM-sleep behavior disorder; MAO: monoamine oxidase; PIGD: postural instability and gait disorder; GBA: glu-
cocerebrosidase; LRRK2: leucine-rich repeat kinase 2; H&Y: Hoehn and Yahr scale; PC: principal component.

Table 1.  Demographic Characteristics for PPMI and Discovery Cohorts at Baseline

PPMI cohort Discovery cohort
Gender count (%) M: 242 (66%)/F: 126 (34%) M: 113 (63%)/F: 66 (37%)
Age at symptom onset (mean ± SD) 61.9 ± 8.8 59.9 ± 9.4
Average current age (mean ± SD) 61.9 ± 8.8 68.7 ± 8.5
Disease duration (mean ± SD) 0.54 ± 0.55 years 8.8 ± 5.1 years
Family history of PD count (%) Yes: 93 (25%)/no: 275 (75%) Yes: 105 (59%)/no: 74 (41%)

PPMI: Parkinson’s Progression Markers Initiative; F: female; M: male; SD: standard deviation.
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PC4. In summary, the following traits were determined to con-
tribute most to variability in the PPMI cohort and were utilized 
for downstream analysis (excluding MDS-UPDRS part 3 score 
and ESS score, which had no Discovery cohort corollary): de-
pression, anxiety, age at diagnosis, gender, and tremor subscore 
(Supplementary Material 6, www. neurores.org).

Establishing cluster reproducibility using results from the 
PPMI Cohort

To establish reproducibility of the clustering results of the Dis-

covery cohort, we repeated cluster analysis for the Discovery 
cohort using only the traits that drove clustering in the larger, 
standardized PPMI cohort (depression, anxiety, age at diag-
nosis, gender, and TD phenotype). Analysis to determine the 
optimal number of clusters for the Discovery cohort based on 
these five traits resulted in a two-cluster solution being rec-
ommended by six indices, and an eight-cluster solution be-
ing recommended by six indices. The two-cluster solution 
was deemed most relevant based on criteria described in the 
methods section. The two-cluster solution resulted in clusters 
with sample sizes of 98 and 81 subjects. Cluster 1 and cluster 
2 maintained the characteristics they had after cohort-based 

Table 2.  Comparison of Discovery Cohort Clusters

Cluster 1 (n = 92) Cluster 2 (n = 87) Uncorrected P value Bonferroni corrected P value
Gendera count (%) M: 63 (68%) M: 50 (57%) 0.158 1

F: 29 (32%) F: 37 (43%)
Age at diagnosisa (year)t (mean ± SD) 58.5 ± 9.6 61.4 ± 9.0 0.0334 0.735
Disease durationa (year)W (mean ± SD) 8.7 ± 5.4 8.9 ± 4.9 0.609 1
+GBA mutation count (%) 13 (14%) 15 (17%) 0.189 1
TDa count (%) 38 (41%) 22 (25%) 0.252 1
PIGD count (%) 24 (26%) 32 (37%) 0.258 1
Hoehn & Yahr scale (score count) 1:14 1:10 0.444 1

1.5:18 1.5:8
2:52 2:44
2.5:4 2.5:10
3:3 3:12
4:1 4:2
5:0 5:1

Wearing off count (%) 29 (32%) 40 (46%) 0.349 1
Dyskinesias count (%) 23 (25%) 36 (41%) 0.028 0.62
Freezing of gait count (%) 16 (17%) 39 (45%) 0.179 1
Depressiona count (%) 12 (13%) 71 (82%) < 0.001 < 0.001
Anxietya count (%) 7 (7.6%) 73 (84%) < 0.001 < 0.001
Hallucinations count (%) 6 (6.5%) 21 (24%) 0.302 1
Cognitive impairmenta count (%) 0 (0%) 6 (6.9%) 0.387 1
Orthostatic hypotensiona count (%) 20 (22%) 45 (52%) 0.015 0.33
Constipationa count (%) 46 (50%) 71 (82%) 0.059 1
Urinary symptomsa count (%) 39 (42%) 37 (43%) 0.314 1
RBDa count (%) 32 (35%) 46 (53%) 0.367 1
Aspirin count (%) 18 (19%) 21 (26%) 0.15 1
Dopaminergic agent count (%) 74 (80%) 74 (85%) 0.265 1
MAOi count (%) 22 (24%) 10 (11%) 0.321 1

Characterization of clinical clusters of the Discovery cohort (n = 179) was based on principal component analysis (PCA) and nonhierarchical k-means 
clustering analysis. Uncorrected and Bonferoni corrected P values are also shown (traits with P < 0.05 were considered to be significantly different 
between the two clusters) from Chi-square analysis, unless otherwise specified (tunpaired t-test, WWilcoxon test). aVariables that were collected 
in both the PPMI and Discovery cohorts. The other traits were determined by chart review (MSMD subset) or by interview (NYU subset). Tremor 
dominant (TD) and Postural Instability and Gait Disorder (PGID) phenotypes were defined based on Movement Disorder Society-Unified Parkinson’s 
disease rating scale (MDS-UPDRS) score [13]. F: female; M: male; MAOi: monoamine oxidase inhibitor; RBD: REM-sleep behavior disorder; REM: 
rapid eye movement; SD: standard deviation.
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clustering (Supplementary Materials 7, 8, www.neurores.org).
Overlap in cluster membership between the cohort-based 

and PPMI-based clusters of the Discovery cohort was assessed 
by calculating the percent of subjects whose cluster member-
ship remained stable or changed. After re-clustering the Dis-
covery cohort, cluster membership was reproducible in 89% 
of subjects (Fig. 3). Eighty-five of the 92 subjects originally 
in cluster 1 remained in cluster 1. Seventy-four of the 87 sub-
jects originally in cluster 2 remained in cluster 2. Forty-two of 
the 179 subjects were assigned to a cluster different from their 
original. Cohen’s kappa statistic revealed substantial agree-
ment (κ = 0.776, P < 0.01).

Discussion

Cluster analysis of clinical cohorts in PD is a valuable tool for 
characterizing phenotypic variability and correlating pheno-
types with specific biomarkers. From a clinical standpoint, de-
lineating PD phenotypes helps clinicians to individualize care 
for PD patients, and from a translational research standpoint, it 
serves as a foundational step in the pathway for development 
of future disease-modifying therapies. However, data collec-
tion methods often differ between clinical and research settings, 
limiting the ability to obtain significant results from smaller or 
less characterized cohorts and to compare findings across stud-
ies. We successfully leveraged cluster analysis of PD subjects 
from one of the largest observational studies of people with PD, 
the PPMI study, to examine generalizability of cluster analysis 
results in a smaller research cohort (Discovery cohort).

Several different methods for establishing cluster repro-
ducibility have been proposed in the literature over the years 

which vary depending on the aims of any particular study. Sta-
tistical models can predict the validity and reproducibility of 
clusters for a given data set. This approach proved particularly 
useful in previous works for analyzing microarrays or other 
large genomics datasets, in which novel clusters are discov-
ered in the absence of pre-existing data sets that would allow 
for external validation [4, 5]. These models may not be ideal, 
however, for other scenarios, such as establishing reproduc-
ibility of cluster analyses between studies.

Similar to one such model developed by McShane et al, we 
used a two-step approach in our clustering analysis in which 
we separately conducted clustering analyses on the Discovery 
cohort and PPMI cohort (from the PPMI database), in order to 
establish a similar underlying pattern of clustering between the 
two groups, followed by a reproducibility analysis [18]. Our 
approach differed, however, in that: 1) We chose to use non-
hierarchical rather than hierarchical clustering given its better 
relative reliability; and 2) We established reproducibility of 
cluster analysis for our Discovery cohort by re-clustering this 
cohort based on clustering analysis of the pre-existing larger, 
standardized PPMI cohort (i.e., an external test of reproduc-
ibility) in addition to using a statistical model like that of Mc-
Shane et al or Kapp et al [18, 19]. The combination of nonhi-
erarchical clustering and clustering agreement can represent a 
useful approach to establishing cluster reproducibility that can 
be leveraged in other cohorts.

Regarding the specific phenotypes derived from our clus-
tering analysis, clustering of the PPMI cohort generated three 
groups: 1) most severe and predominantly nonmotor symp-
toms with trend towards a PIGD phenotype; 2) younger age 
of onset with overall milder symptoms (motor and nonmotor); 
and 3) older age of onset with predominantly motor symptoms 

Figure 2. Principal component analysis of the PPMI cohort (n = 368) based on demographic, motor, and nonmotor characteris-
tics demonstrated three PD subtypes. (a) Scatter plot depicting separation of subjects across the first two principal components. 
(b) Heatmap of clinical characteristics for each cluster identified, with data scaled using z-scores. The greater red hue indicates 
more severe impairment or greater number of years; greater blue hue indicates less severe impairment or fewer number of years. 
Traits with a statistically significant difference between clusters as determined via ANOVA for continuous data and Chi-square 
for categorical data, defined as Bonferroni corrected P < 0.05, are indicated with an asterix (*). PD: Parkinson’s disease; PPMI: 
Parkinson’s Progression Markers Initiative; RBD: REM-sleep behavior disorder; UPSIT: University of Pennsylvania Smell Identi-
fication Test; MDS-UPDRS: Movement Disorder Society - Unified Parkinson's Disease Rating Scale; MoCA: Montreal Cognitive 
Assessment; GDS: Geriatric Depression Scale; STAI: State-Trait Anxiety Inventory; SCOPA: Scales for Outcome in Parkinson’s 
Disease; ESS: Epworth Sleepiness Scale; QUIP: Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease; PC: 
principal component; ANOVA: analysis of variance; REM: rapid eye movement.
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and trend towards a TD phenotype. Previous studies have gen-
erated similar phenotypic PD subtypes using other methods of 
clustering analysis of PPMI data, providing further support to 
the reproducibility of our results [1, 2]. Fereshtehnejad et al 
[1], for example, identified three clusters. Their “diffuse ma-
lignant” subtype aligns with our first cluster in that both have 
greater impairment in GDS, STAI, QUIP, and OH; further, 
their study has significantly higher PIGD subscore, and ours 
has trend towards higher PIGD subscore, Their “mild motor-
predominant” aligns with our second cluster in that both have 
younger age, lower UPDRS part 3, and overall mild nonmotor 
symptoms; to note, while in their study this cluster had the 
greatest proportion of TD predominant subjects, the overall 
tremor subscore was lowest in this cluster in both their and 

our study due to overall low UPDRS part 3. Lastly, their “in-
termediate” subtype aligns with our cluster 3 in that subjects 
have an older age of onset, and the scores for most nonmo-
tor traits were between those of the other two clusters. In our 
study, this third cohort had the statistically significant highest 
UPDRS part 3, whereas in their study there was no significant 
difference in UPDRS part 3 between this cluster and the “mild-
motor predominant” cluster [1].

Clustering of the Discovery cohort yielded two distinct 
phenotypes, which remained stable after re-clustering based 
on the PPMI cohort: 1) a less severe phenotype with milder 
symptoms and a trend towards TD; and 2) a more severe phe-
notype with prominent motor and nonmotor symptoms (trend-
ing values except for anxiety and depression that were statisti-

Table 3.  Comparison of Demographic and Clinical Characteristics of the Three Clusters From the PPMI Cohort

Cluster 1  
(n = 71)

Cluster 2  
(n = 142)

Cluster 3  
(n = 155)

Bonferroni cor-
rected P value

Genderc counta (%) M: 37 (52%) M: 90 (63%) M: 115 (74%) 0.069
F: 34 (48%) F: 52 (37%) F: 40 (26%)

Family historyc counta (%) Y: 20 (28%) Y: 37 (26%) Y: 36 (23%) 1
N: 51 (72%) N: 105 (74%) N: 119 (77%)

Age at diagnosis (years) (mean ± SD) 61.1 ± 8.7 57.4 ± 7.6 66.4 ± 7.5 < 0.001
Disease duration (months) (mean ± SD) 5.8 ± 5.9 6.0 ± 6.3 7.2 ± 7.0 1
Motor symptoms (MDS-UPDRS part 3) (mean ± SD) 20.9 ± 7.5 15.0 ± 5.4 26.5 ± 8.0 < 0.001
PIGD (mean ± SD) 1.5 ± 1.4 0.64 ± 0.73 1.4 ± 1.2 1
TD (mean ± SD) 5.2 ± 3.4 4.5 ± 3.0 6.5 ± 3.7 0.008
Hoehn & Yahra scalec (score count) 1:35 1:105 1:18 < 0.001

2:36 2:37 2:135
3:2

Depression (GDS)a (mean ± SD) 5.9 ± 3.0 1.2 ± 1.3 1.7 ± 1.2 < 0.001
Anxiety (STAI)a (mean ± SD) 90.4 ± 17.7 57.9 ± 12.0 59.6 ± 12.5 < 0.001
Cognitive function (MOCA)a, b (mean ± SD) 27.1 ± 2.6 28.0 ± 1.9 26.5 ± 2.4 0.101
Orthostatic hypotension (SCOPA-AUT)a (mean ± SD) 0.99 ± 1.2 0.28 ± 0.54 0.41 ± 0.67 < 0.001
Constipation (SCOPA-AUT)a (mean ± SD) 1.9 ± 1.6 0.47 ± 0.78 1.2 ± 1.1 0.277
Urinary symptoms (SCOPA-AUT)a (mean ± SD) 6.2 ± 6.6 3.2 ± 2.2 5.0 ± 4.9 1
Impulse control disorder (mean ± SD) 0.77 ± 1.02 0.15 ± 0.36 0.14 ± 0.40 < 0.001
Daytime sleepiness (mean ± SD) 6.8 ± 4.0 5.1 ± 3.2 6.1 ± 3.6 1
RBD (RBDSQ)a (mean ± SD) 5.3 ± 2.9 3.1 ± 2.0 4.5 ± 2.8 1
Smell function (UPSIT) (mean ± SD) 21.2 ± 8.2 25.2 ± 7.7 20.0 ± 7.9 0.319

Characterization of clinical clusters of the PPMI cohort (n = 368) was based on principal component analysis (PCA) and nonhierarchical k-means 
clustering analysis. Uncorrected and Bonferoni corrected P values are also shown (traits with P < 0.05 were considered to be significantly different 
between the two clusters) from ANOVA analysis, unless otherwise specified (cChi-square). aVariables that were collected in both the PPMI and Dis-
covery cohorts. bData that were collected from screening visit instead of baseline visit, due to data availability. Tremor dominant (TD) and Postural 
Instability and Gait Disorder (PGID) phenotypes were defined based on Movement Disorder Society-Unified Parkinson’s disease rating scale (MDS-
UPDRS) score [13]. Depression was defined as Geriatric Depression scale (GDS) score ≥ 10. Anxiety was defined as state-Trait Anxiety Inventory 
(STAI) score > 40. Cognitive impairment was defined as Montreal Cognitive Assessment (MOCA) score ≤ 25. Orthostatic hypotension, constipation, 
and urinary symptoms each was defined as Outcomes in Parkinson’s Disease-Autonomic Dysfunction (SCOPA-AUT) subscore > 0. REM behavior 
disorder was defined as REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) score ≥ 5. Impulse control disorder was defined as MDS-
UPDRS subscore > 0. Daytime sleepiness was defined as Epworth Sleepiness Scale > 0. Cognitive impairment was defined as Montreal Cognitive 
Assessment (MOCA) score ≤ 25. PPMI: Parkinson’s Progression Markers Initiative; F: female; M: male; MAOi: monoamine oxidase inhibitor; RBD: 
REM-sleep behavior disorder; UPSIT: University of Pennsylvania Smell Identification Test; SD: standard deviation.
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cally significant) (Supplementary Material 8, www.neurores.
org). Promisingly, these phenotypes generally align with those 
obtained from clustering of the PPMI cohort, with a clear in-
termediate/motor predominant subtype and a severe subtype.

Although a comparison between the clusters from the 
PPMI cohort and the Discovery cohort would be interesting, 
this goes beyond the scope of this work, where the main goal 
was to leverage the clustering of a larger and better annotated 
dataset (PPMI) and assess internal reproducibility within our 
Discovery cohort.

There were limitations to this study. First, several vari-
ables were excluded from the initial Discovery cohort analysis 
due to missingness. Second, k-means clustering requires for 
the number of clusters to be prespecified, which can introduce 
bias. We minimized this bias by utilizing the NbClust pack-
age to determine the optimal number of clusters; however, it 
was necessary to input a range for the minimum and maximum 
number of clusters the function could suggest; our analyses 
used two to seven clusters. Lastly, limitations of our Discovery 
cohort included small sample size, wide variability in disease 
duration, lack of continuous data, and its differences compared 
to the PPMI cohort in traits such as average disease duration 
and dopaminergic medication use. These limitations, which 
underscore the need for leveraging larger and better character-
ized cohorts, likely contributed to the fact that certain cluster 
solutions were unstable (i.e., during the re-clustering step, only 
six of 30 indices recommended a two-cluster solution). Ad-
ditionally, the two clusters identified were strongly differenti-
ated by only a few traits, and that some of the traits that drove 
clustering in the PPMI cohort were not statistically significant 

drivers of clustering in the Discovery cohort.
In summary, we propose a statistical approach, consisting 

of nonhierarchical clustering analysis followed by assessment 
of clustering agreement and re-clustering to establish cluster 
reproducibility between our Discovery cohort and the larger, 
standardized database for PD (PPMI), despite differences in 
size and data collection methods between the two cohorts. Our 
results suggest that the same traits dictate cluster membership 
in the PPMI cohort and our Discovery cohort, adding confi-
dence to the generalizability of future findings from the Dis-
covery cohort to the broader PD population. The phenotypic 
subtypes derived from clustering analysis of the Discovery 
cohort align with already well-established PD phenotypes, 
lending further support to the reproducibility of our results. 
Establishing a methodology for validating reproducibility and 
generalizability of clustering analysis in our Discovery cohort 
represents the first step for further analysis in novel biomarker 
discovery from our cohort to be validated by the larger, stand-
ardized PPMI dataset. Importantly, this technique can be ap-
plied to other diseases as well, allowing for analysis of cohorts 
that are less extensively characterized or those with low intrin-
sic power secondary to low sample size.

Learning points

Cluster analysis, which categorizes subjects into groups of 
“maximal similarity”, serves as a valuable statistical tool for 
characterizing phenotypic variability in PD cohorts and for 
correlating phenotypes with specific biomarkers.

We successfully leveraged cluster analysis of PD subjects 
from one of the largest observational studies of people with 
PD, the PPMI study, in order to examine the generalizability 
of cluster analysis results obtained using a smaller research co-
hort (Discovery cohort).

The phenotypes derived from clustering analysis of the 
PPMI cohort included: 1) severe and predominantly nonmo-
tor symptoms with trend towards PIGD phenotype; 2) younger 
age of onset with overall milder symptoms (both motor and 
nonmotor); and 3) older age of onset with predominantly mo-
tor symptoms and trend towards TD phenotype.

Our results suggest that cluster analysis of large, well-
characterized cohorts can be used to establish reproducibility 
in smaller cohorts with low intrinsic power.

Supplementary Material

Suppl 1. Infographic outlining the study methods.
Suppl 2. Barplot depicting missingness in the Discovery co-
hort, with y-axis representing percent of subjects that did not 
have data available for a given variable.
Suppl 3. Summary of factor loadings of the first four princi-
pal components of the Discovery cohort’s principal component 
analysis.
Suppl 4. Barplot depicting missingness in the PPMI cohort, 
with y-axis representing percent of subjects that did not have 

Figure 3. Cluster membership of subjects in Discovery cohort remained 
largely unchanged after re-clustering based on a limited selection of 
traits. Pink represents subjects assigned to cluster 1 in both analyses. 
Blue represents subjects assigned to cluster 2 in both analyses. Purple 
indicates subjects originally assigned to cluster 1 who were reassigned 
to cluster 2. Black indicates subjects originally assigned to cluster 2 
who were reassigned to cluster 1. PC: principal component.
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data available for a given variable.
Suppl 5. Scree plot depicting eigenvectors of PPMI cohort 
principal components (PC), with an arrow indicating inflec-
tion point (elbow) at PC4.
Suppl 6. Summary of factor loadings of the first four principal 
components of the PPMI cohort’s principal component analysis.
Suppl 7. Principal component analysis of the Discovery cohort 
(n = 179) was conducted based on traits determined to con-
tribute most significantly to the PPMI cohort. (A) Scatter plot 
depicting separation of subjects across the first two principal 
components. (B) Heatmap of clinical characteristics for each 
cluster identified. The greater red hue indicates greater preva-
lence, greater blue hue indicates lower prevalence.
Suppl 8. Comparison of demographic and clinical characteris-
tics of the two clusters from the Discovery cohort after repeat-
ed cluster analysis using only the traits that drove clustering in 
the PPMI cohort.

Acknowledgments

We thank all the patients at NYU and MSMD who took part in 
this study and the participants who took part in the PPMI study, 
as well as the PPMI database for access to the shared data, and 
the Nichols Research Lab at the Cincinnati Children’s Hospital 
for assisting with genotype analyses.

Financial Disclosure

G.R. is supported by grants from the National Institute of 
Health (NIH) (R01NS133742-01), Michael J Fox Founda-
tion, Parkinson’s Foundation, and Department of Defense 
(PD210038). T.R. and G.R. are supported by a grant from 
the NIH (R01NS116006); K.W. is supported by a grant from 
the Icahn School of Medicine Summer Student Investigator 
award. J.F.C. is supported by NIH grants RF1NS095252, RF-
1AG060961, R01NS086736, R01AG062348, R01AG054008, 
P30AG066514, and U54NS115266, as well as the Rainwater 
Charitable Foundation (Tau Consortium), and the Parkinson’s 
Disease Foundation. PPMI (a public-private partnership) 
is funded by the Michael J. Fox Foundation for Parkinson’s 
Research and funding partners, including Abbvie, Acurex 
Therapeutics, Allergan, Amathus therapeutics, Avid radiophar-
maceuticals, Bial Biotech, Biogen, Biolegend, Bristol Myers 
Squibb, Calico, Celgene, Jenali, 4D Pharma PLC, GE Health-
care, Genentech, Glass Smith Kline, Golub Capital, Handl 
Therapeutics, Insitro, Jannsen Neuroscience, Lilli,Lundbeck, 
Merck, Meso Scale Discovery, Neurocrine Biosciences, Pfizer, 
Piramal, Prevail Therapeutics, Roche, Sanofi Genzyme, Ser-
vier, Takeda, Teva Pharmaceuticals, Union Chimique Belge, 
Verily, and Voyager Therapeutics.

Conflict of Interest

The authors have no conflict of interest to disclose.

Informed Consent

All the procedures involving human subjects were performed 
upon written informed consent, approval from the Institutional 
Review Board and in accord with the Helsinki Declaration of 
1975.

Author Contributions

Kristen Watkins: study design, data analysis, manuscript writ-
ing and revision. Julia Greenberg: study design, data interpre-
tation, manuscript writing and revision. Kelly Astudillo: data 
collection, manuscript revision. Charalambos Argyrou: data 
analysis, manuscript revision. Wen-Yu Lee: data analysis. John 
F. Crary: data analysis, manuscript revision. Steven J. Frucht: 
study design, manuscript revision. Towfique Raj: study design, 
data analysis, manuscript revision. Giulietta Maria Riboldi: 
study design, data analysis and interpretation, manuscript writ-
ing and revision.

Data Availability

The data supporting the findings are available from the cor-
responding author upon reasonable request. Data used in the 
preparation of this article were obtained from the Parkinson’s 
Progression Markers Initiative (PPMI) database (www.ppmi-
info.org/data). For up-to-date information on the study, visit 
www.ppmi-info.org.

Abbreviations

PD: Parkinson’s disease; PPMI: Parkinson’s Progression 
Markers Initiative; MSMD: Mount Sinai Movement Disor-
ders; NYU: New York University; FoG: freezing of gait; RBD: 
REM-sleep behavior disorder; MAOi: monoamine oxidase in-
hibitors; COMT: catechol-O-methyltransferase; TD: tremor 
dominant; PIGD: postural instability and gait disorder; GBA: 
glucocerebrosidase; LRRK2: leucine-rich repeat kinase 2; 
H&Y: Hoehn and Yahr scale; UPSIT: University of Pennsyl-
vania Smell Identification Test; UPDRS III: Unified Parkin-
son’s Disease Rating Scale Part III; MoCA: Montreal Cogni-
tive Assessment; MDS-UPDRS: Movement Disorder Society 
- Unified Parkinson’s Disease Rating Scale; GDS: Geriatric 
Depression Scale; STAI: State-Trait Anxiety Inventory; SCO-
PA-AUT: Scales for Outcome in Parkinson’s Disease - Auto-
nomic; ESS: Epworth Sleepiness Scale; QUIP: Questionnaire 
for Impulsive-Compulsive Disorders in Parkinson’s Disease; 
PCA: principal component analysis; PC: principal component; 
ANOVA: analysis of variance; REM: rapid eye movement

References

1. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma 
RB. Clinical criteria for subtyping Parkinson's dis-



Articles © The authors   |   Journal compilation © J Neurol Res and Elmer Press Inc™   |   www.neurores.org58

Clinical Clusters in Parkinson’s Disease J Neurol Res. 2024;14(2):49-58

ease: biomarkers and longitudinal progression. Brain. 
2017;140(7):1959-1976. doi pubmed

2. van Rooden SM, Heiser WJ, Kok JN, Verbaan D, van 
Hilten JJ, Marinus J. The identification of Parkinson's 
disease subtypes using cluster analysis: a systematic re-
view. Mov Disord. 2010;25(8):969-978. doi pubmed

3. Hendricks RM, Khasawneh MT. A systematic review of 
Parkinson's disease cluster analysis research. Aging Dis. 
2021;12(7):1567-1586. doi pubmed pmc

4. Mestre TA, Eberly S, Tanner C, Grimes D, Lang AE, 
Oakes D, Marras C. Reproducibility of data-driven Par-
kinson's disease subtypes for clinical research. Parkinson-
ism Relat Disord. 2018;56:102-106. doi pubmed

5. Erro R, Picillo M, Vitale C, Palladino R, Amboni M, Moc-
cia M, Pellecchia MT, et al. Clinical clusters and dopamin-
ergic dysfunction in de-novo Parkinson disease. Parkin-
sonism Relat Disord. 2016;28:137-140. doi pubmed

6. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins 
GT, Counsell C, Giladi N, et al. Movement Disorder 
Society Task Force report on the Hoehn and Yahr stag-
ing scale: status and recommendations. Mov Disord. 
2004;19(9):1020-1028. doi pubmed

7. Mehanna R, Jankovic J. Young-onset Parkinson's disease: 
Its unique features and their impact on quality of life. Par-
kinsonism Relat Disord. 2019;65:39-48. doi pubmed

8. van Buuren S, Groothuis-Oudshoorn K. Mice: multivari-
ate imputation by chained equations in R. Journal of Sta-
tistical Software. 2011;45(3):1-67. doi

9. Kowarik A, Templ M. Imputation with the R package 
VIM. Journal of Statistical Software. 2016;74(7):1-16. 
doi

10. R Core Team. R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing, 
Vienna, Austria. 2019. https://www.R-project.org/.

11. Parkinson Progression Marker Initiative. The parkinson 
progression marker initiative (PPMI). Prog Neurobiol. 
2011;95(4):629-635. doi pubmed pmc

12. Zeighami Y, Fereshtehnejad SM, Dadar M, Collins DL, 
Postuma RB, Dagher A. Assessment of a prognostic MRI 
biomarker in early de novo Parkinson's disease. Neuroim-
age Clin. 2019;24:101986. doi pubmed pmc

13. Liu R, Umbach DM, Troster AI, Huang X, Chen H. Non-
motor symptoms and striatal dopamine transporter bind-
ing in early Parkinson's disease. Parkinsonism Relat Dis-
ord. 2020;72:23-30. doi pubmed pmc

14. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, 
Tilley BC. How to identify tremor dominant and postural 
instability/gait difficulty groups with the movement dis-
order society unified Parkinson's disease rating scale: 
comparison with the unified Parkinson's disease rating 
scale. Mov Disord. 2013;28(5):668-670. doi pubmed

15. Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: 
an R package for determining the relevant number of 
clusters in a data set. Journal of Statistical Software. 
2014;61(6):1-36. doi

16. Funtikova AN, Benitez-Arciniega AA, Fito M, Schroder 
H. Modest validity and fair reproducibility of di-
etary patterns derived by cluster analysis. Nutr Res. 
2015;35(3):265-268. doi pubmed

17. McHugh ML. Interrater reliability: the kappa statistic. Bi-
ochem Med (Zagreb). 2012;22(3):276-282. pubmed pmc

18. McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, 
Simon R. Methods for assessing reproducibility of clus-
tering patterns observed in analyses of microarray data. 
Bioinformatics. 2002;18(11):1462-1469. doi pubmed

19. Kapp AV, Tibshirani R. Are clusters found in one dataset 
present in another dataset? Biostatistics. 2007;8(1):9-31. 
doi pubmed

https://www.doi.org/10.1093/brain/awx118
http://www.ncbi.nlm.nih.gov/pubmed/28549077
https://www.doi.org/10.1002/mds.23116
http://www.ncbi.nlm.nih.gov/pubmed/20535823
https://www.doi.org/10.14336/AD.2021.0519
http://www.ncbi.nlm.nih.gov/pubmed/34631208
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460306
https://www.doi.org/10.1016/j.parkreldis.2018.07.009
http://www.ncbi.nlm.nih.gov/pubmed/30056038
https://www.doi.org/10.1016/j.parkreldis.2016.04.026
http://www.ncbi.nlm.nih.gov/pubmed/27158121
https://www.doi.org/10.1002/mds.20213
http://www.ncbi.nlm.nih.gov/pubmed/15372591
https://www.doi.org/10.1016/j.parkreldis.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/31176633
https://www.doi.org/10.18637/jss.v045.i03
https://www.doi.org/10.18637/jss.v074.i07
https://www.doi.org/10.18637/jss.v074.i07
https://www.doi.org/10.1016/j.pneurobio.2011.09.005
http://www.ncbi.nlm.nih.gov/pubmed/21930184
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014725
https://www.doi.org/10.1016/j.nicl.2019.101986
http://www.ncbi.nlm.nih.gov/pubmed/31514113
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742805
https://www.doi.org/10.1016/j.parkreldis.2020.02.001
http://www.ncbi.nlm.nih.gov/pubmed/32092703
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222918
https://www.doi.org/10.1002/mds.25383
http://www.ncbi.nlm.nih.gov/pubmed/23408503
https://www.doi.org/10.18637/jss.v061.i06
https://www.doi.org/10.1016/j.nutres.2014.12.011
http://www.ncbi.nlm.nih.gov/pubmed/25634767
http://www.ncbi.nlm.nih.gov/pubmed/23092060
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052
https://www.doi.org/10.1093/bioinformatics/18.11.1462
http://www.ncbi.nlm.nih.gov/pubmed/12424117
https://www.doi.org/10.1093/biostatistics/kxj029
https://www.doi.org/10.1093/biostatistics/kxj029
http://www.ncbi.nlm.nih.gov/pubmed/16613834

